Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Despite the f0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ ) meson, a tetraquark ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ ) exotic state, a kaon-antikaon ($${{\rm{K}}}\overline{{{\rm{K}}}}$$ ) molecule, or a quark-antiquark-gluon ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ ) hybrid. This paper reports strong evidence that the f0(980) state is an ordinary$${{\rm{q}}}\overline{{{\rm{q}}}}$$ meson, inferred from the scaling of elliptic anisotropies (v2) with the number of constituent quarks (nq), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0(980) state is reconstructed via its dominant decay channel f0(980) →π+π−, in proton-lead collisions recorded by the CMS experiment at the LHC, and itsv2is measured as a function of transverse momentum (pT). It is found that thenq= 2 ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ state) hypothesis is favored overnq= 4 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ or$${{\rm{K}}}\overline{{{\rm{K}}}}$$ states) by 7.7, 6.3, or 3.1 standard deviations in thepT< 10, 8, or 6 GeV/cranges, respectively, and overnq= 3 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ hybrid state) by 3.5 standard deviations in thepT< 8 GeV/crange. This result represents the first determination of the quark content of the f0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abstract The Pixel Luminosity Telescope is a silicon pixel detector dedicated to luminosity measurement at the CMS experiment at the LHC. It is located approximately 1.75 m from the interaction point and arranged into 16 “telescopes”, with eight telescopes installed around the beam pipe at either end of the detector and each telescope composed of three individual silicon sensor planes. The per-bunch instantaneous luminosity is measured by counting events where all three planes in the telescope register a hit, using a special readout at the full LHC bunch-crossing rate of 40 MHz. The full pixel information is read out at a lower rate and can be used to determine calibrations, corrections, and systematic uncertainties for the online and offline measurements. This paper details the commissioning, operational history, and performance of the detector during Run 2 (2015–18) of the LHC, as well as preparations for Run 3, which will begin in 2022.more » « less
-
Bound states of charm and anticharm quarks, known as charmonia, have a rich spectroscopic structure that can be used to probe the dynamics of hadron production in high-energy hadron collisions. Here, the cross section ratio of excited and ground state vector mesons is measured as a function of the charged-particle multiplicity in proton-lead ( ) collisions at a center-of-mass (CM) energy per nucleon pair of 8.16 TeV. The data corresponding to an integrated luminosity of were collected using the CMS detector. The ratio is measured separately for prompt and nonprompt charmonia in the transverse momentum range and in four rapidity ranges spanning . For the first time, a statistically significant multiplicity dependence of the prompt cross section ratio is observed in proton-nucleus collisions. There is no clear rapidity dependence in the ratio. The prompt measurements are compared with a theoretical model which includes interactions with nearby particles during the evolution of the system. These results provide additional constraints on hadronization models of heavy quarks in nuclear collisions.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Abstract Salient aspects of the commissioning, calibration, and performance of the CMS silicon strip tracker are discussed, drawing on experience during operation with proton-proton collisions delivered by the CERN LHC. The data were obtained with a variety of luminosities. The operating temperature of the strip tracker was changed several times during this period and results are shown as a function of temperature in several cases. Details of the system performance are presented, including occupancy, signal-to-noise ratio, Lorentz angle, and single-hit spatial resolution. Saturation effects in the APV25 readout chip preamplifier observed during early Run 2 are presented, showing the effect on various observables and the subsequent remedy. Studies of radiation effects on the strip tracker are presented both for the optical readout links and the silicon sensors. The observed effects are compared to simulation, where available, and they generally agree well with expectations.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Abstract “Soft” muons with a transverse momentum below 10 GeV are featured in many processes studied by the CMS experiment, such as decays of heavy-flavor hadrons or rare tau lepton decays. Maximizing the selection efficiency for these muons, while simultaneously suppressing backgrounds from long-lived light-flavor hadron decays, is therefore important for the success of the CMS physics program. Multivariate techniques have been shown to deliver better muon identification performance than traditional selection techniques. To take full advantage of the large data set currently being collected during Run 3 of the CERN LHC, a new multivariate classifier based on a gradient-boosted decision tree has been developed. It offers a significantly improved separation of signal and background muons compared to a similar classifier used for the analysis of the Run 2 data. The performance of the new classifier is evaluated on a data set collected with the CMS detector in 2022 and 2023, corresponding to an integrated luminosity of 62 fb-1.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Nuclear medium effects on meson production are studied using the binary-collision scaled cross section ratio between events of different charged-particle multiplicities from proton-lead collisions. Data, collected by the CMS experiment in 2016 at a nucleon-nucleon center-of-mass energy of , corresponding to an integrated luminosity of , were used. The scaling factors in the ratio are determined using a novel approach based on the cross sections measured in the same events. The scaled ratio for is consistent with unity for all event multiplicities, putting stringent constraints on nuclear modification for heavy flavor. © 2025 CERN, for the CMS Collaboration2025CERNmore » « lessFree, publicly-accessible full text available March 1, 2026
-
The first observation of the concurrent production of two mesons in proton-nucleus collisions is presented. The analysis is based on a proton-lead ( ) data sample recorded at a nucleon-nucleon center-of-mass energy of 8.16 TeV by the CMS experiment at the CERN LHC and corresponding to an integrated luminosity of . The two mesons are reconstructed in their decay channels with transverse momenta and rapidity . Events where one of the mesons is reconstructed in the dielectron channel are also considered in the search. The process is observed with a significance of 5.3 standard deviations. The measured inclusive fiducial cross section, using the four-muon channel alone, is . A fit of the data to the expected rapidity separation for pairs of mesons produced in single (SPS) and double (DPS) parton scatterings yields and , respectively. This latter result can be transformed into a lower bound on the effective DPS cross section, closely related to the squared average interparton transverse separation in the collision, of at 95% confidence level. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
-
Abstract The performance of muon tracking, identification, triggering, momentum resolution, and momentum scale has been studied with the CMS detector at the LHC using data collected at √(sNN) = 5.02 TeV in proton-proton (pp) and lead-lead (PbPb) collisions in 2017 and 2018, respectively, and at √(sNN) = 8.16 TeV in proton-lead (pPb) collisions in 2016. Muon efficiencies, momentum resolutions, and momentum scales are compared by focusing on how the muon reconstruction performance varies from relatively small occupancy pp collisions to the larger occupancies of pPb collisions and, finally, to the highest track multiplicity PbPb collisions. We find the efficiencies of muon tracking, identification, and triggering to be above 90% throughout most of the track multiplicity range. The momentum resolution and scale are unaffected by the detector occupancy. The excellent muon reconstruction of the CMS detector enables precision studies across all available collision systems.more » « less
An official website of the United States government
